Range-relaxed criteria for choosing the Lagrange multipliers in nonstationary iterated Tikhonov method
نویسندگان
چکیده
منابع مشابه
Nonstationary Iterated Tikhonov Regularization
A convergence rate is established for nonstationary iterated Tik-honov regularization, applied to ill-posed problems involving closed, densely deened linear operators, under general conditions on the iteration parameters. It is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.
متن کاملOn the Method of Lagrange Multipliers
and there are no inequality constraints (i.e. there are no fi(x) i = 1, . . . , m). We simply write the p equality constraints in the matrix form as Cx− d = 0. The basic idea in Lagrangian duality is to take the constraints in (1) into account by augmenting the objective function with a weighted sum of the constraint functions. We define the Lagrangian L : R ×R ×R → R associated with the proble...
متن کاملLocal Stability Conditions for the Babuska Method of Lagrange Multipliers
We consider the so-called Babuska method of finite elements with Lagrange multipliers for numerically solving the problem Au = f in il, u = g on 3Í2, iî C Rn, 7i > 2. We state a number of local conditions from which we prove the uniform stability of the Lagrange multiplier method in terms of a weighted, mesh-dependent norm. The stability conditions given weaken the conditions known so far and a...
متن کاملNonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces
Nonstationary iterated Tikhonov regularization is an efficient method for solving ill-posed problems in Hilbert spaces. However, this method may not produce good results in some situations since it tends to oversmooth solutions and hence destroy special features such as sparsity and discontinuity. By making use of duality mappings and Bregman distance, we propose an extension of this method to ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IMA Journal of Numerical Analysis
سال: 2018
ISSN: 0272-4979,1464-3642
DOI: 10.1093/imanum/dry066